skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sullivan, Peter_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent field observations suggest that the air‐sea momentum flux (or the drag coefficient) is significantly reduced when the dominant wind‐forced surface waves are misaligned from local wind. Such conditions may occur under rapidly changing strong winds (such as under tropical cyclones) or in coastal shallow waters where waves are refracted by bottom topography. A recent Large Eddy Simulation (LES) study also shows that the drag coefficient is reduced by a misaligned strongly forced wave train (with a small wave age of 1.37). In order to investigate more realistic field conditions, this study employs LES to examine the effect of a misaligned (up to 90°) surface wave train over a wide range of wave age up to 10.95. For all wave ages examined, the drag coefficient is reduced compared to the flat surface condition when the misalignment angle exceeds around 22.5°–45°. The drag reduction may occur even if the form drag of the wave train is positive. 
    more » « less